Kurulum Adımları
Önceki yazımızda görüntü işleme için gerekli yapıları genel olarak inceledikten sonra;
1- İlk olarak Python programlama dilini belirttiğim adresten 2.7 sürümünü indirin ve kurulumunu tamamlayınız. https://www.python.org/downloads/#pubkeys
2- Sonra Visual Studio Code’u belirttiğim adresten size uygun olan işletim sistemine göre indirme işlemini yapıp, kurulumu tamamlayınız.
https://code.visualstudio.com/Download.
3- Ardından aşağıda bulunan ekran görüntüsündeki adımları uygulayarak Python programlama dilini kullanmak için gerekli eklentiyi entegre ediniz.
3- Bu adımdan sonra sol üst köşede bulunan file sekmesinden File > New File adamalarıyla yeni bir dosya oluşturunuz.
4- Ardından kodlarımızı geliştirmeye başlamadan önce Visual Studio Code’un Python dosyasını tanıyabilmesi için oluşturduğumuz dosyayı CTRL+ SHIFT+S (Farklı Kaydet) kısa yolu yardımıyla uzantısını .py olarak değiştirmelisiniz.
5- Bu işlemin ardından aşağıdaki fotoğrafı indirip .py uzantılı dosyanızla aynı klasöre taşıyışınız.
5- Artık kullanacağımız kütüphaneleri Visual Studio Code terminali vasıtasıyla indirmeye başlayabiliriz.
6- Python programlama dilinin bilimsel hesaplamaların temel kütüphanesi olan NumPy‘yi indirmek için terminale “pip install numpy” komutunu yazarak ulaşabilirsiniz.
7- Ardından görseller üzerinde gerekli manipüle işlemlerini yapabilmemiz için gerekli olan OpenCV kütüphanesini indirmek için terminale “pip install opencv-python” komutunu yazarak ulaşabilirsiniz.
Tebrikler eğer bu adıma kadar sorunsuz gelmeyi başardıysanız artık Python programlama dili ile geliştirmeye başlayabiliriz.
import numpy
import cv2
fotograf = cv2.imread('peakup.jpg')
fotografGri = cv2.cvtColor(fotograf, cv2.COLOR_BGR2GRAY)
cv2.imwrite("peakupGri.jpg",fotografGri)
ret,fotografBW = cv2.threshold(fotografGri,110,240,cv2.THRESH_BINARY)
cv2.imshow('Binary Fotograf', fotografBW)
cv2.imshow('Orijinal Fotograf', fotograf)
cv2.imshow('Gri tonlarina cevrilmis fotograf', fotografGri)
cv2.imwrite("peakup01.jpg",fotografBW)
cv2.waitKey(0)
cv2.destroyAllWindows()
kodların ayrıntılı açıklamalarına https://goo.gl/KUpwYk adresinden ulaşabilirsiniz.
ekteki kodu yazıp kaydettikten sonra Terminal tarafından dosyamızın bulunduğu ilgili dizine gidip “python demo.py” komutu ile kodlarımızı çalıştırabiliriz.
ve yazdığımız kod çıktımız aşağıdaki gibi gözükecektir. Aynı zamanda ilgili dizinde manipüle ettiğimiz fotoğrafların ayrı ayrı çıktılarını görebilirsiniz.
Bir sonraki yazımızda Python programlama dili ile daha kompleks görüntü işleme örneklerine değineceğiz. Sıradaki yazımızda görüşmek üzere…